
RESTful Web API Patterns 
and Practices

Mike Amundsen
@mamund







Overview

● Pattern Thinking
● Design 
● Clients
● Services
● Data
● Workflow
● Summary



Pattern Thinking



Pattern Thinking

A framework for 
understanding, 
designing, and 
constructing systems



Pattern Thinking

Inductive reasoning is any of various 
methods of reasoning in which broad 
generalizations or principles are derived 
from a body of observations.



Pattern Thinking

"Each pattern describes a problem 
which occurs over and over again, and 
then describes the core of the solution 
to that problem, in such a way that you 

can use this solution a million times 
over, without ever doing it the same way 

twice"

-- Christopher Alexander



Pattern Thinking

Web-centric implementations 
rely on three key elements: 

messages, actions, and 
vocabularies.



Pattern Thinking

Messages represent the way we 
share information



Pattern Thinking

Actions represent the reason 
we share information.



Pattern Thinking

Vocabularies represent
the meaning of the messages 

we share.



Pattern Thinking

Web-centric implementations 
rely on three key elements: 

messages, actions, and 
vocabularies.



RESTful Patterns



Design



Design Patterns

Design systems so that machines 
built by different people who have 

never met can successfully 
interact with each other.



Design Patterns

3.1 Creating Interoperability with Registered Media Types
3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies
3.4 Describing Problem Spaces with Semantic Profiles
3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia
3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions
3.9 Design for Reversible Actions
3.10 Design for Extensible Messages
3.11 Design for Modifiable Interfaces



Design Patterns

3.1 Creating Interoperability with Registered Media Types
3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies
3.4 Describing Problem Spaces with Semantic Profiles
3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia
3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions
3.9 Design for Reversible Actions
3.10 Design for Extensible Messages
3.11 Design for Modifiable Interfaces



Design Patterns

3.1 Creating Interoperability with Registered Media Types
3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies
3.4 Describing Problem Spaces with Semantic Profiles
3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia
3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions
3.9 Design for Reversible Actions
3.10 Design for Extensible Messages
3.11 Design for Modifiable Interfaces



Design Patterns

3.1 Creating Interoperability with Registered Media Types
3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies
3.4 Describing Problem Spaces with Semantic Profiles
3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia
3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions
3.9 Design for Reversible Actions
3.10 Design for Extensible Messages
3.11 Design for Modifiable Interfaces



Design Patterns 

Describing Problem Spaces with 
Semantic Profiles



Design Patterns 

Describing Problem Spaces with 
Semantic Profiles



Design Patterns 

Describing Problem Spaces with Semantic Profiles



Make designs composable



Clients



Client Patterns

Create API consumer apps that 
make few assertions about how 

they communicate (protocol, 
message model, and vocabulary) 

with servers and let the server 
supply the details (the what) at 

runtime.



Client Patterns

4.1 Limiting the use of Hard-Coded URLs
4.2 Code Clients to be HTTP-Aware
4.3 Coding More Resilient Clients With Message-Centric Implementations
4.4 Coding Effective Clients to Understand Vocabulary Profiles
4.5 Negotiate for Profile Support at Runtime
4.6 Managing Representation Formats At Runtime
4.7 Using Schema Documents as a Source of Message Metadata
4.8 Every Important Element Within a Response Needs an Identifier
4.9 Relying on Hypermedia Controls In the Response
4.10 Supporting Links and Forms for Non-Hypermedia Services
4.11 Validating Data Properties At Runtime
4.12 Using Document Schemas to Validate Outgoing Messages
4.13 Using Document Queries to Validate Incoming Messages
4.14 Validating Incoming Data
4.15 Maintaining Your Own State
4.16 Having A Goal In Mind



Client Patterns

4.1 Limiting the use of Hard-Coded URLs
4.2 Code Clients to be HTTP-Aware
4.3 Coding More Resilient Clients With Message-Centric Implementations
4.4 Coding Effective Clients to Understand Vocabulary Profiles
4.5 Negotiate for Profile Support at Runtime
4.6 Managing Representation Formats At Runtime
4.7 Using Schema Documents as a Source of Message Metadata
4.8 Every Important Element Within a Response Needs an Identifier
4.9 Relying on Hypermedia Controls In the Response
4.10 Supporting Links and Forms for Non-Hypermedia Services
4.11 Validating Data Properties At Runtime
4.12 Using Document Schemas to Validate Outgoing Messages
4.13 Using Document Queries to Validate Incoming Messages
4.14 Validating Incoming Data
4.15 Maintaining Your Own State
4.16 Having A Goal In Mind



Client Patterns

4.1 Limiting the use of Hard-Coded URLs
4.2 Code Clients to be HTTP-Aware
4.3 Coding More Resilient Clients With Message-Centric Implementations
4.4 Coding Effective Clients to Understand Vocabulary Profiles
4.5 Negotiate for Profile Support at Runtime
4.6 Managing Representation Formats At Runtime
4.7 Using Schema Documents as a Source of Message Metadata
4.8 Every Important Element Within a Response Needs an Identifier
4.9 Relying on Hypermedia Controls In the Response
4.10 Supporting Links and Forms for Non-Hypermedia Services
4.11 Validating Data Properties At Runtime
4.12 Using Document Schemas to Validate Outgoing Messages
4.13 Using Document Queries to Validate Incoming Messages
4.14 Validating Incoming Data
4.15 Maintaining Your Own State
4.16 Having A Goal In Mind



Client Patterns

4.1 Limiting the use of Hard-Coded URLs
4.2 Code Clients to be HTTP-Aware
4.3 Coding More Resilient Clients With Message-Centric Implementations
4.4 Coding Effective Clients to Understand Vocabulary Profiles
4.5 Negotiate for Profile Support at Runtime
4.6 Managing Representation Formats At Runtime
4.7 Using Schema Documents as a Source of Message Metadata
4.8 Every Important Element Within a Response Needs an Identifier
4.9 Relying on Hypermedia Controls In the Response
4.10 Supporting Links and Forms for Non-Hypermedia Services
4.11 Validating Data Properties At Runtime
4.12 Using Document Schemas to Validate Outgoing Messages
4.13 Using Document Queries to Validate Incoming Messages
4.14 Validating Incoming Data
4.15 Maintaining Your Own State
4.16 Having A Goal In Mind



Client Patterns

4.1 Limiting the use of Hard-Coded URLs
4.2 Code Clients to be HTTP-Aware
4.3 Coding More Resilient Clients With Message-Centric Implementations
4.4 Coding Effective Clients to Understand Vocabulary Profiles
4.5 Negotiate for Profile Support at Runtime
4.6 Managing Representation Formats At Runtime
4.7 Using Schema Documents as a Source of Message Metadata
4.8 Every Important Element Within a Response Needs an Identifier
4.9 Relying on Hypermedia Controls In the Response
4.10 Supporting Links and Forms for Non-Hypermedia Services
4.11 Validating Data Properties At Runtime
4.12 Using Document Schemas to Validate Outgoing Messages
4.13 Using Document Queries to Validate Incoming Messages
4.14 Validating Incoming Data
4.15 Maintaining Your Own State
4.16 Having A Goal In Mind



Client Patterns

Managing Representation Formats 
at Runtime



Client Patterns

Managing Representation Formats 
at Runtime



Client Patterns

Managing Representation Formats 
at Runtime



Client Patterns

Managing Representation Formats 
at Runtime



Make clients adaptable



Services



Service Patterns

The API is the contract — the 
promise that needs to be kept.



Service Patterns

5.1 Publishing at Least One Stable URL
5.2 Preventing Internal Model Leaks
5.3 Converting Internal Models to External Messages
5.4 Expressing Internal Functions as External Actions
5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation
5.7 Publishing Complete Vocabularies for Machine Clients
5.8 Supporting Shared Vocabularies in Standard Formats
5.9 Publishing Service Definition Documents
5.10 Publishing API Metadata
5.11 Supporting Service Health Monitoring
5.12 Standardizing Error Reporting
5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers
5.15 Improving Reliability with Idempotent Create
5.16 Providing Runtime Fallbacks for Dependent Services
5.17 Using Semantic Proxies to Access Non-Compliant Services



Service Patterns

5.1 Publishing at Least One Stable URL
5.2 Preventing Internal Model Leaks
5.3 Converting Internal Models to External Messages
5.4 Expressing Internal Functions as External Actions
5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation
5.7 Publishing Complete Vocabularies for Machine Clients
5.8 Supporting Shared Vocabularies in Standard Formats
5.9 Publishing Service Definition Documents
5.10 Publishing API Metadata
5.11 Supporting Service Health Monitoring
5.12 Standardizing Error Reporting
5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers
5.15 Improving Reliability with Idempotent Create
5.16 Providing Runtime Fallbacks for Dependent Services
5.17 Using Semantic Proxies to Access Non-Compliant Services



Service Patterns

5.1 Publishing at Least One Stable URL
5.2 Preventing Internal Model Leaks
5.3 Converting Internal Models to External Messages
5.4 Expressing Internal Functions as External Actions
5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation
5.7 Publishing Complete Vocabularies for Machine Clients
5.8 Supporting Shared Vocabularies in Standard Formats
5.9 Publishing Service Definition Documents
5.10 Publishing API Metadata
5.11 Supporting Service Health Monitoring
5.12 Standardizing Error Reporting
5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers
5.15 Improving Reliability with Idempotent Create
5.16 Providing Runtime Fallbacks for Dependent Services
5.17 Using Semantic Proxies to Access Non-Compliant Services



Service Patterns

5.1 Publishing at Least One Stable URL
5.2 Preventing Internal Model Leaks
5.3 Converting Internal Models to External Messages
5.4 Expressing Internal Functions as External Actions
5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation
5.7 Publishing Complete Vocabularies for Machine Clients
5.8 Supporting Shared Vocabularies in Standard Formats
5.9 Publishing Service Definition Documents
5.10 Publishing API Metadata
5.11 Supporting Service Health Monitoring
5.12 Standardizing Error Reporting
5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers
5.15 Improving Reliability with Idempotent Create
5.16 Providing Runtime Fallbacks for Dependent Services
5.17 Using Semantic Proxies to Access Non-Compliant Services



Improve Service Discoverability with a Runtime Service Registry

Service Patterns



Service Patterns

Improve Service Discoverability with a Runtime Service Registry



Service Patterns

Improve Service Discoverability with a Runtime Service Registry



Make services modifiable



Data



Data Patterns

"Your data model is not your object 
model is not your resource model is 

not your representation model."

-- Amundsen's Maxim

https://www.amundsens-maxim.com/


Data Patterns

6.1 Hiding Your Data Storage Internals
6.2 Making All Changes Idempotent
6.3 Hide Data Relationships for External Actions
6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses
6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries
6.8 Ignore Unknown Data Fields
6.9 Improving Performance with Caching Directives
6.10 Modifying Data Models In Production
6.11 Extending Remote Data Stores
6.12 Limiting Large Scale Responses
6.13 Using Pass-Through Proxies for Data Exchange



Data Patterns

6.1 Hiding Your Data Storage Internals
6.2 Making All Changes Idempotent
6.3 Hide Data Relationships for External Actions
6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses
6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries
6.8 Ignore Unknown Data Fields
6.9 Improving Performance with Caching Directives
6.10 Modifying Data Models In Production
6.11 Extending Remote Data Stores
6.12 Limiting Large Scale Responses
6.13 Using Pass-Through Proxies for Data Exchange



Data Patterns

6.1 Hiding Your Data Storage Internals
6.2 Making All Changes Idempotent
6.3 Hide Data Relationships for External Actions
6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses
6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries
6.8 Ignore Unknown Data Fields
6.9 Improving Performance with Caching Directives
6.10 Modifying Data Models In Production
6.11 Extending Remote Data Stores
6.12 Limiting Large Scale Responses
6.13 Using Pass-Through Proxies for Data Exchange



Data Patterns

6.1 Hiding Your Data Storage Internals
6.2 Making All Changes Idempotent
6.3 Hide Data Relationships for External Actions
6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses
6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries
6.8 Ignore Unknown Data Fields
6.9 Improving Performance with Caching Directives
6.10 Modifying Data Models In Production
6.11 Extending Remote Data Stores
6.12 Limiting Large Scale Responses
6.13 Using Pass-Through Proxies for Data Exchange



Data Patterns

Modifying Data Models in 
Production



Data Patterns

Modifying Data Models in 
Production



Data Patterns

Modifying Data Models in 
Production



Data Patterns

Modifying Data Models in 
Production

Third-party SaaS data

Your local extension data



Make data portable



Workflow



Workflow Patterns

Each service that is enlisted 
in a workflow should be a 

composable service.



Workflow Patterns

7.1 Designing Workflow-Compliant Services
7.2 Supporting Shared State for Workflows
7.3 Describing Workflow as Code
7.4 Describing Workflow as DSL
7.5 Describing Workflow as Documents
7.6 Supporting RESTful Job Control Language
7.7 Exposing a Progress Resource for Your Workflows
7.8 Returning All Related Actions
7.9 Returning Most-Recently Used Resources (MRUs)
7.10 Supporting Stateful Work-In-Progress
7.11 Enabling Standard List Navigation
7.12 Supporting Partial Form Submit
7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays
7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries
7.17 Supporting Local Undo/Rollback
7.18 Calling for Help
7.19 Scaling Workflow with Queues and Clusters
7.20 Using Workflow Proxies to Enlist Non-Compliant Services



7.1 Designing Workflow-Compliant Services
7.2 Supporting Shared State for Workflows
7.3 Describing Workflow as Code
7.4 Describing Workflow as DSL
7.5 Describing Workflow as Documents
7.6 Supporting RESTful Job Control Language
7.7 Exposing a Progress Resource for Your Workflows
7.8 Returning All Related Actions
7.9 Returning Most-Recently Used Resources (MRUs)
7.10 Supporting Stateful Work-In-Progress
7.11 Enabling Standard List Navigation
7.12 Supporting Partial Form Submit
7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays
7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries
7.17 Supporting Local Undo/Rollback
7.18 Calling for Help
7.19 Scaling Workflow with Queues and Clusters
7.20 Using Workflow Proxies to Enlist Non-Compliant Services

Workflow Patterns



Workflow Patterns

7.1 Designing Workflow-Compliant Services
7.2 Supporting Shared State for Workflows
7.3 Describing Workflow as Code
7.4 Describing Workflow as DSL
7.5 Describing Workflow as Documents
7.6 Supporting RESTful Job Control Language
7.7 Exposing a Progress Resource for Your Workflows
7.8 Returning All Related Actions
7.9 Returning Most-Recently Used Resources (MRUs)
7.10 Supporting Stateful Work-In-Progress
7.11 Enabling Standard List Navigation
7.12 Supporting Partial Form Submit
7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays
7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries
7.17 Supporting Local Undo/Rollback
7.18 Calling for Help
7.19 Scaling Workflow with Queues and Clusters
7.20 Using Workflow Proxies to Enlist Non-Compliant Services



Workflow Patterns

7.1 Designing Workflow-Compliant Services
7.2 Supporting Shared State for Workflows
7.3 Describing Workflow as Code
7.4 Describing Workflow as DSL
7.5 Describing Workflow as Documents
7.6 Supporting RESTful Job Control Language
7.7 Exposing a Progress Resource for Your Workflows
7.8 Returning All Related Actions
7.9 Returning Most-Recently Used Resources (MRUs)
7.10 Supporting Stateful Work-In-Progress
7.11 Enabling Standard List Navigation
7.12 Supporting Partial Form Submit
7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays
7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries
7.17 Supporting Local Undo/Rollback
7.18 Calling for Help
7.19 Scaling Workflow with Queues and Clusters
7.20 Using Workflow Proxies to Enlist Non-Compliant Services



Workflow Patterns

RESTful Job Control Language



Workflow Patterns

RESTful Job Control Language



Workflow Patterns

RESTful Job Control Language



Workflow Patterns

RESTful Job Control Language



Workflow Patterns

RESTful Job Control Language



Workflow Patterns

RESTful Job Control Language



Make workflow flexible



And so …



The RESTful Web API Principle



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



The RESTful Web API Principle

"Leverage global reach 
to solve problems you 
haven’t thought of for 

people you have 
never met."



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Goals

● Make designs composable
● Make clients adaptable
● Make services modifiable
● Make data portable
● Make workflow flexible



Pattern Thinking -- and Models

"Everything we think we know about the 
world is a model."

-- Donella Meadows, 2008



Pattern Thinking

"The difference between the novice and 
the teacher is simply that the novice has 
not learnt, yet, how to do things in such 

a way that they can afford to make 
small mistakes."

-- Christopher Alexander



Pattern Thinking

"The difference between the novice and 
the teacher is simply that the novice 

has not learnt, yet, how to do things in 
such a way that they can afford to make 

small mistakes."

-- Christopher Alexander



RESTful Web API Patterns 
and Practices

Mike Amundsen
@mamund



RESTful Web API Patterns 
and Practices

Mike Amundsen
@mamund


