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What are RESTful Microservices?
Models, Messages, and Vocabularies
BREAK

Runtime Service Infrastructure

The Adaptable System

Summary
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Materials

Laptop w/ wifi
NodedS

Browser and cURL
Your favorite editor
Github and Heroku
Pen and Paper

AP1 ACADEMY

mmmmmmmmmmm




What are RESTful Microservices?
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What are RESTful Microservices”?

Microservices
RESTful-ness
Microservice Constraints
Analysis Exercise
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Microservices

"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."
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http://g.mamund.com/msabook

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen
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Microservices

independently deployable

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen
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Microservices

independently deployable
bounded scope

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen
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Microservices
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independently deployable
bounded scope
message-based

http://g.mamund.com/msabook

Micro
Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE
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Matt McLarty & Mike Amundsen
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Microservices
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independently deployable
bounded scope
message-based

highly automated

http://g.mamund.com/msabook

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
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Microservices
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independently deployable
bounded scope
message-based

highly automated evolvable

http://g.mamund.com/msabook

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen
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Microservices

Independently deployable
Bounded scope
Message-based

Highly automated
Evolvable
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http://g.mamund.com/msabook

Architecture

ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen
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RESTful-ness

" H / i i Architectural Styles and

ThIS dlssertatlon deflneS a framework fOI" the Design of Network-based Software Architectures
understanding software architecture via ooy
architectural styles and demonstrates how Wit i
styles can be used to guide the architectural S0 wa
design of network-based application e
software."

] . PDF Editions

- Fielding, 2000 P —
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RESTful-ness

UNIVERSITY OF CALIFORNIA, IRVINE

Architectural Styles and
the Design of Network-based Software Architectures

understanding software architecture

submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in Information and Computer Science
by
Roy Thomas Fielding

2000

Dissertation Committee:
Professor Richard N. Taylor, Chair
Professor Mark S. Ackerman
Professor David S. Rosenblum

PDF Editions

- F | e I d | n g y 2 O 0 O l~co:umn for viewing online

for nrinting
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RESTful-ness
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RESTful-ness

Properties

AP1 ACADEMY

Performance
Scalability
Simplicity
Modifiability
Visibility
Portability
Reliability
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RESTful-ness

Properties + Requirements

e Performance e Low-Entry Barrier

e Scalability e Extensibility

e Simplicity e Distributed Hypermedia
e Modifiability e |Internet Scale

e Visibility

e Portability

e Reliability
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RESTful-ness

Properties + Requirements = Constraints

e Performance e Low-Entry Barrier e Client-Server

e Scalability e Extensibility e Stateless

e Simplicity e Distributed Hypermedia o Cache

e Modifiability e |Internet Scale e Uniform Interface
e \Visibility e Layered System
e Portability e Code on Demand
e Reliability

RESTful
Web A
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RESTful-ness

"When | say hypertext, | mean the simultaneous
presentation of information and controls such
that the information becomes the affordance
through which the user (or automaton) obtains
choices and selects actions."

- Fielding, 2008
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http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

REST APIs must be hypertext-driven

20 Oct
2008  Posted by Roy T. Fielding under software architecture, web
architecture
[51] Comments

Mon

1 am getting frustrated by the number of people calling any HTTP-based
interface a REST AP Today’s example is the SocialSite REST API. That
is RPC. It screams RPC. There is so much coupling on display that it
should be given an X rating.

‘What needs to be done to make the REST architectural style clear on the
notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext,
then it cannot be RESTful and cannot be a REST API. Period. Is there
some broken manual somewhere that needs to be fixed?

API designers, please note the following rules before calling your
creation a REST APL:

AREST API should not be dependent on any single
communication protocol, though its successful mapping to a
given protocol may be dependent on the availability of metadata,
choice of methods, etc. In general, any protocol element that uses
a URI for identification must allow any URI scheme to be used
ih, £ idontifination [ailiwa hove imnlios that

Archived Entry

Post Date :

Monday, Oct 20th, 2008
at 5:20 am

Category :

software architecture
and web architecture

Tags :
hypertext, REST
Do More :

Both comments and

pings are currently
closed.

Search
Categories

blogging (4)

Family (1)

open source (3)

software architecture (7)

standards (2)

systems engineering (2)
» system dynamics (1)

web architecture (11)
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RESTful-ness

information becomes the affordance

- Fielding, 2008
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http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Mon REST APIs must be hypertext-driven

20 Oct
2008  Posted by Roy T. Fielding under software architecture, web
architecture
[51] Comments

1 am getting frustrated by the number of people calling any HTTP-based
interface a REST AP Today’s example is the SocialSite REST API. That

is RPC. It screams RPC. There is so much coupling on display that it
should be given an X rating.

‘What needs to be done to make the REST architectural style clear on the

notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext,
then it cannot be RESTful and cannot be a REST API. Period. Is there
some broken manual somewhere that needs to be fixed?

API designers, please note the following rules before calling your
creation a REST APL:

AREST API should not be dependent on any single
communication protocol, though its successful mapping to a
given protocol may be dependent on the availability of metadata,
choice of methods, ete. In general, any protocol element that uses
a URI for identification must allow any URI scheme to be used
s i s [t bk Sianti sho
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Fielding's REST ticks many of the boxes for Microservices

AP1 ACADEMY
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Microservice Constraints

Manage only service-state, not client state (no persistent sessions)
Rely on Uniform Interface protocols (HTTP, MQTT, CoAP, etc.)
Communicate in Structured Formats (HTML, Atom, Cj, HAL, etc.)
Support Shared Vocabularies (ALPS, DCAP, etc.)

Support Advertising, Discovery, and Health-Check
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Analysis Exercise
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Models, Messages, and Vocabularies
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Models, Messages, and Vocabularies

Models on the Inside
Messages on the Outside
Vocabularies Everywhere
Design Exercise

AP1 ACADEMY
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Data on the Inside vs. Data on the QOutside

"This paper proposes there are a number of

seminal differences between data inside a service
and data sent into the space outside of the service
boundary.

-- Pat Helland, 2005
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cidrdb.org/cidr2005/papers/P12.pdf

Data on the Outside versus Data on the Inside

Pat Helland

Microsoft Corporation
One Microsoft Way
Redmond, WA

USA
PHelland@Microsoft.com

Abstract

Recently, a lot of interest has been shown in
Service Oriented Architectures). In these
systems, there are multiple services each with its
own code and data, and ability to operate
independently of its partners. In particular,

boundary. We. msider objects, SQL, and
ML 2 diffrent reectemiatioos of Gan, Hach
of these models has strengths and weaknesses
when applied 10 the inside and outside of the
serviee boundary. The paper concludes that the
strength of each of these models in one area is
derived from essential characteristics underlying
its weakness in the other arca

. Introduction

Service Oriented Architectures (SOA) is an exciting topic
of discussion lately. While we can easily look o the past
1 s eramplsof arge entereise ot we can
characterize A, the discussion of this
applcuion siyle: s a derign pasiipm s ltively
t. This section attempts to deseribe what is meant by

1.1 Service Oriented Architectures

Serdis Ot A a4 il
of independent and autonomous services service
comprises a chunk of code and data that is ymvmlc 0 that
service. Services are different than the classic application
living in a silo and interacting only with humans in that
they ar nerconnecied with meseages oot services.

Servie ko wilh exch obér exisively
roughimessages. No kaowiedss ofths peton is
hared otber than he mesage lormats nd th scquences
of the messages that are expected. I s explicily allowed
(and, indeed, expected) that the partner service may
implemented with heterogeneous technology at all levels
of the stack including hardware, operating system,
database, middle S (ol application vendor or
i e

o covmns of SOR, i i depmilet iy

bR s B i messaging.

1.2 Bounding Trust v

Encapsulation
Services interact via a collection of messages whose
formats (schema) and business semantics are well
Each service will only do limited things for its
based upon the well defined message.

rvice. The only way to
rvice is via the prescribed messages
cach of witich will vk spplcation Joge 1 docde i
and when to access the data encapsulated within the

ORELLY"
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Models on the Inside

Inside is immediate, transactional

Data storage models (customers.db, orders.db)
Programming object models (objCustomer)

Inside is local, controllable

Inside relies on a shared "now"

AP1 ACADEMY

http://amundsen.com/talks/2017-07-chattanooga/

AFFORDANCE-CENTRIC
RESOURCE-CENTRIC
osrecT-cenRic

RESTful
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Messages on the Outside

QOutside is always in the past, non-transactional
Resource models (/customers/, /orders/)
Message models (customer.html, order.hal)
Outside is remote, uncontrollable

There is no shared "now"
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http://amundsen.com/talks/2017-07-chattanooga/

AFFORDANCE-CENTRIC
RESOURCE-CENTRIC
osrecT-cenRic
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If the models are different inside and out, what is shared?

AP1 ACADEMY
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ocabularies Everywhere

Vocabulary is how humans share (language, slang, etc.)
We use the same vocabulary for many models
Vocabularies delineate domains (medicine, IT, etc.)

IT vocabularies already exist:
Dublin Core

schema.org

microformats

IANA Link Relation Values

e ALPS is a media-type and protocol independent
description format

o O O O
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https://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-02

[Docs] [txt|pdf|xml|html] [Tracker] [Email] [Diffl] [Diff2] [Nits]
Versions: 00 01 62
Network Working Group M. Amundsen

Internet-Draft

Expires: February 25, 2016 L. Richardson
M. Foster
August 24, 2015
Application-Level Profile Semantics (ALPS)
draft-amundsen-richardson-foster-alps-02
Abstract

This document describes ALPS, a data format for defining simple
descriptions of application- {evel semantics, similar in complexlty to
HTML microformats. An ALPS
explain the application semantics of a document with an applxcatlon—
agnostic media type (such as HTML, HAL, Collection+JSON, Siren,
This increases the reusabllny of profile documents across

etc.).

media types.

Editorial Note (To be removed by RFC Editor)

Distribution of this document is unlimited.
to the IETF Media-Types mailing list (see {1])

Status of This Memo

This Internet-Draft is submitted in full conformance with the

ocument can be

CA Technologies, Inc.

used as a

Comments should be sent

provisions of BCP 78 and BCP 79.

Internet-Drafts are workmg documents of the Internet Englneermg
Task Force (IETF). Note that other groups may also distribute
working documents as Internet- Drafts The list of current Internet-

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 25, 2016.
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Design Exercise
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Runtime Service Infrastructure
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Runtime Service Infrastructure

Advertising Services
Discovering Services
Health Checking
Discovery Exercise

AP1 ACADEMY
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Advertising Services

"A service instance is responsible for registering itself with
the service registry. On startup the service instance
registers itself (host and IP address) with the service
reqgistry and makes itself available for discovery. The client
must typically periodically renew its registration so that the
reqgistry knows it is still alive. On shutdown, the service
instance unregisters itself from the service registry."”

-- microservices.io

API ACADEMY |

Web» Clients
http://microservices.io/patterns/self-registration.html
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Advertising Services

With examples in Java

registers itself
periodically renew

unregisters itself

-- microservices.io
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http://microservices.io/patterns/self-registration.html




Advertising Services

Register upon startup
De-Register at shutdown
Renew at intervals
De-Register after crashes

AP1 ACADEMY ve -

Web» Clients
http://microservices.io/patterns/self-registration.html




Advertising Services

CODE EXAMPLE HERE
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http://microservices.io/patterns/self-registration.html
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Discovering Services

"When making a request to a service, the Pattern: Client-side discovery
client obtains the location of a service load  'ossterse SIS
. . . . —— ™ =g Te Instance A
instance by querying a Service Registry, el roquest rosscdss s

. 44— Wsenice
which knows the locations of all service | Instance B
instances.” t04dz03” Sorvo

register

-- microservices.io

R
Web Clients
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Discovering Services

querying a Service Regqistry

-- microservices.io

AP1 ACADEMY

Pattern: Client-side discovery

|Oad 10A.3.1:87567 SeMce
balance Instance A

_request 104390105 ‘
e ,ﬁv/Service
Instance B

10.4,3.20:338
/ el

register

Service
Instance C

RESTF
Web Clients
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Discovering Services

[ Configure client w/ r‘egistr‘yURL Pattern: Client-side d|SCO\/ery
e Query Registry w/ serviceURI joad  "o4aterse EERRE
i : B balance Instance A
e Registry returns serviceURL J L B
[ 2 . e Senvice
e Client uses serviceURL s lpsiance
L

Renewal optional

APL ACADEMY
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R
Web Clients

mmmmmmmmmmm




Discovering Services

CODE EXAMPLE

API ACADEMY

Pattern: Client-side discovery

|Oad 10.4.8.1:87567 Sefvice
balance Instance A

i 7riequest 10.4.3.99:4545

/ Service
Instance B

10.4,3.20:338
4 el

register

Service
Instance C

RESTful
Web Clients
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Health Checking

"A service has an health check API endpoint
(e.g. HTTP /health) that returns the health of
the service. A health check client - a
monitoring service, service reqistry or load
balancer - periodically invokes the endpoint to
check the health of the service instance."

-- microserivce.io

Network Working Group 1. Nadareishvili|
January 16, 2018
00000

Intended status: Informational
Expires: July 20, 2018 |

Health Check Response Format for HTTP APIs

draft-inadarei-api-health-check-00

Abstract

This document proposes a service health check response format for HTTP APIs.

Note to Readers

RFC EDITOR: pl r this ion before publicati

The issues list for this draft can be found at https://github.com/inadarei/rfc-healthcheck/issues.
The most recent draft is at https://inadarei.github.io/rfc-healthcheck/.
Recent changes are listed at https://github.com/inadarei/rfc-healthcheck/commits/master.

See also the draft’s current status in the IETF datatracker, at https://datatracker.ietf.org/doc/draft-
inadarei-api-health-check/.
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https://inadarei.github.io/rfc-healthcheck/
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Health Checking

Network Working Group 1. Nadareishvili
January 16, 2018
00000

Intended status: Informational
Expires: July 20, 2018 |

Health Check Response Format for HTTP APIs

draft-inadarei-api-health-check-00

Abstract

This document proposes a service health check response format for HTTP APIs.

periodically invokes the endpoint Note to Readers

RFC EDITOR: please remove this section before publication

The issues list for this draft can be found at https://github.com/inadarei/rfc-healthcheck/issues.
The most recent draft is at https://inadarei.github.io/rfc-healthcheck/.

Recent changes are listed at https://github.com/inadarei/rfc-healthcheck/commits/master.

See also the draft’s current status in the IETF datatracker, at https://datatracker.ietf.org/doc/draft-

. m icrose rivce . io inadarei-api-health-check/.

——rr orRey |

RESTful
Web APIs
Y v
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Health Checking

Services support health-checks

Services renew with the registry

Registry drops service on failed checks
Registry drops service on expired renewals

Network Working Group 1. Nadareishvili|
January 16, 2018
00000

Intended status: Informational
Expires: July 20, 2018 |

Health Check Response Format for HTTP APIs

draft-inadarei-api-health-check-00

Abstract

This document proposes a service health check response format for HTTP APIs.

Note to Readers

RFC EDITOR: pl r this ion before publi

The issues list for this draft can be found at https://github.com/inadarei/rfc-healthcheck/issues.
The most recent draft is at https://inadarei.github.io/rfc-healthcheck/.
Recent changes are listed at https://github.com/inadarei/rfc-healthcheck/commits/master.

See also the draft’s current status in the IETF datatracker, at https://datatracker.ietf.org/doc/draft-
inadarei-api-health-check/.
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Health Checking

CODE EXAMPLE

AP1 ACADEMY

Network Working Group 1. Nadareishvili
January 16, 2018

Intended status: ational @]
Expires: July 20, 2018 |

Health Check Response Format for HTTP APIs

draft-inadarei-api-health-check-00

Abstract
This document proposes a service health check response format for HTTP APIs.
Note to Readers

RFC EDITOR: pl r this ion before p

The issues list for this draft can be found at https://github.com/inadarei/rfc-healthcheck/issues.
The most recent draft is at https://inadarei.github.io/rfc-healthcheck/.
Recent changes are listed at https://github.com/inadarei/rfc-healthcheck/commits/master.

See also the draft’s current status in the IETF datatracker, at https://datatracker.ietf.org/doc/draft-
inadarei-api-health-check/.

https://inadarei.github.io/rfc-healthcheck/
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Discovery patterns are the DNS of application services.

AP1 ACADEMY
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Discovery Exercise
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The Adaptable System
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The Adaptable System

Service/API Designers
Evolvable Providers
Adaptable Consumers
Adaptation Exercise
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Service/API| Designers

"The value of a well-designed object is
when it has such a rich set of
affordances that the people who use it
can do things with it that the designer
never imagined.”

-- Donald Norman, 1994

AP1 ACADEMY

https://en.wikipedia.org/wiki/The _Design_of Everyday Things

Donald A. Norman

Co-founder & principal of the Nielsen
Norman group

i HE
DESIGN
OF
EVERYDAY

THINGS

R
Web Clients
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Service/API| Designers

Donald A. Norman

e Promise message models, not object types

. . . g Co-founder & principal of the Nielsen
e Document link identifiers, not URLs Noman gioup
e Publish vocabularies, not API definitions

i HE
DESIGN
OF
EVERYDAY

THINGS

AP1 ACADEMY

RESTful = |
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https://en.wikipedia.org/wiki/The _Design_of Everyday Things
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Evolvable Providers

"When people are building on top of our API,
we’re really asking them to trust us with the time
they’re investing in building their applications.
And to earn that trust, we can’t make changes [to
the API] that would cause their code to break."

-- Jason Rudolph, Github (2013)

RESTful
Web APIs
APl ACADEMY V-

https://www.slideshare.net/yandex/api-design-at-github-jason-rudolph-github
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Evolvable Providers

e Don't take things away
e Don't change the meaning of things
e Make all additions optional

AP1 ACADEMY

https://www.slideshare.net/yandex/api-design-at-github-jason-rudolph-github

@jasonrudolph

RESTful
Web APIs
Viﬂ" )

OREILLY

RES
Web Clients

mmmmmmmmmmm




Adaptable Consumers

"When you can build a client that — ] O REQEST a

doesn’t have to memorize the solution ' /"

ahead of time you can start building

clients who are 'smart’' enough to ( WAT FOR-NEXT STEP 2 I
adapt to new possibilities as the —

service presents them." < \g

-- Mike Amundsen, 2016
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http://shop.oreilly.com/product/0636920037958.do




Adaptable Consumers

Code defensively

Code to the media type

Leverage the API vocabulary
React to link relations for workflow

AP1 ACADEMY

http://shop.oreilly.com/product/0636920037958.do
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Providers evolve via humans, consumers adapt via code.

AP1 ACADEMY
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Adaptation Exercise
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Summary
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Summary

A RESTful Design
Message-Oriented Implementation
Discovery Patterns

Emergent Adaptability

AP1 ACADEMY

mmmmmmmmmmm




A RESTful Design

e Microservices means independent & loosely-coupled
e REST properties are close to Microservice properties
e Adopt Microservice Constraints

AP1 ACADEMY

@Fielding

RESTful
Web

OREILL
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Message-Oriented Implementation

e Models on the Inside
e Messages on the Outside
e \ocabularies Everywhere

AP1 ACADEMY

RESTful
Web APIs
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Discovery Patterns

e Advertising Services
e Discovering Services
e Health Checking/Renewals

AP1 ACADEMY

@CRichardson

RESTful
Web APIs
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Emergent Adaptability

e Designers promise messages
e Services implement non-breaking changes
e Consumers code defensively

AP1 ACADEMY
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