
RESTful Microservices
from the Ground Up

Mike Amundsen
API Academy

@mamund

Agenda
● 9:00 - 9:45 : What are RESTful Microservices?
● 9:45 - 10:30 : Models, Messages, and Vocabularies
● 10:30 - 10:45 : BREAK
● 10:45 - 11:30 : Runtime Service Infrastructure
● 11:30 - 12:15 : The Adaptable System
● 12:15 - 12:30 : Summary

Materials
● Laptop w/ wifi
● NodeJS
● Browser and cURL
● Your favorite editor
● Github and Heroku
● Pen and Paper

What are RESTful Microservices?

What are RESTful Microservices?
● Microservices
● RESTful-ness
● Microservice Constraints
● Analysis Exercise

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style of
engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
"A microservice is an independently deployable
component of bounded scope that supports
interoperability through message-based
communication. Microservice architecture is a style
of engineering highly automated, evolvable software
systems made up of capability-aligned
microservices."

http://g.mamund.com/msabook

Microservices
● Independently deployable
● Bounded scope
● Message-based
● Highly automated
● Evolvable

http://g.mamund.com/msabook

RESTful-ness
"This dissertation defines a framework for
understanding software architecture via
architectural styles and demonstrates how
styles can be used to guide the architectural
design of network-based application
software."

- Fielding, 2000

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

RESTful-ness
"This dissertation defines a framework for
understanding software architecture via
architectural styles and demonstrates how
styles can be used to guide the architectural
design of network-based application
software."

- Fielding, 2000

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

RESTful-ness

RESTful-ness
Properties

● Performance
● Scalability
● Simplicity
● Modifiability
● Visibility
● Portability
● Reliability

RESTful-ness
Properties

● Performance
● Scalability
● Simplicity
● Modifiability
● Visibility
● Portability
● Reliability

+ Requirements

● Low-Entry Barrier
● Extensibility
● Distributed Hypermedia
● Internet Scale

RESTful-ness
Properties

● Performance
● Scalability
● Simplicity
● Modifiability
● Visibility
● Portability
● Reliability

+ Requirements

● Low-Entry Barrier
● Extensibility
● Distributed Hypermedia
● Internet Scale

= Constraints

● Client-Server
● Stateless
● Cache
● Uniform Interface
● Layered System
● Code on Demand

RESTful-ness
"When I say hypertext, I mean the simultaneous
presentation of information and controls such
that the information becomes the affordance
through which the user (or automaton) obtains
choices and selects actions."

- Fielding, 2008

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

RESTful-ness
"When I say hypertext, I mean the simultaneous
presentation of information and controls such
that the information becomes the affordance
through which the user (or automaton) obtains
choices and selects actions."

- Fielding, 2008

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Fielding's REST ticks many of the boxes for Microservices

Microservice Constraints
● Manage only service-state, not client state (no persistent sessions)
● Rely on Uniform Interface protocols (HTTP, MQTT, CoAP, etc.)
● Communicate in Structured Formats (HTML, Atom, Cj, HAL, etc.)
● Support Shared Vocabularies (ALPS, DCAP, etc.)
● Support Advertising, Discovery, and Health-Check

Analysis Exercise

Models, Messages, and Vocabularies

Models, Messages, and Vocabularies
● Models on the Inside
● Messages on the Outside
● Vocabularies Everywhere
● Design Exercise

Data on the Inside vs. Data on the Outside
"This paper proposes there are a number of
seminal differences between data inside a service
and data sent into the space outside of the service
boundary."

-- Pat Helland, 2005

cidrdb.org/cidr2005/papers/P12.pdf

Models on the Inside
● Inside is immediate, transactional
● Data storage models (customers.db, orders.db)
● Programming object models (objCustomer)
● Inside is local, controllable
● Inside relies on a shared "now"

http://amundsen.com/talks/2017-07-chattanooga/

Messages on the Outside
● Outside is always in the past, non-transactional
● Resource models (/customers/, /orders/)
● Message models (customer.html, order.hal)
● Outside is remote, uncontrollable
● There is no shared "now"

http://amundsen.com/talks/2017-07-chattanooga/

If the models are different inside and out, what is shared?

Vocabularies Everywhere
● Vocabulary is how humans share (language, slang, etc.)
● We use the same vocabulary for many models
● Vocabularies delineate domains (medicine, IT, etc.)
● IT vocabularies already exist:

○ Dublin Core
○ schema.org
○ microformats
○ IANA Link Relation Values

● ALPS is a media-type and protocol independent
description format

https://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-02

Design Exercise

BREAK

Runtime Service Infrastructure

Runtime Service Infrastructure
● Advertising Services
● Discovering Services
● Health Checking
● Discovery Exercise

Advertising Services
"A service instance is responsible for registering itself with
the service registry. On startup the service instance
registers itself (host and IP address) with the service
registry and makes itself available for discovery. The client
must typically periodically renew its registration so that the
registry knows it is still alive. On shutdown, the service
instance unregisters itself from the service registry."

-- microservices.io

http://microservices.io/patterns/self-registration.html

Advertising Services
"A service instance is responsible for registering itself with
the service registry. On startup the service instance
registers itself (host and IP address) with the service
registry and makes itself available for discovery. The client
must typically periodically renew its registration so that the
registry knows it is still alive. On shutdown, the service
instance unregisters itself from the service registry."

-- microservices.io

http://microservices.io/patterns/self-registration.html

Advertising Services
● Register upon startup
● De-Register at shutdown
● Renew at intervals
● De-Register after crashes

http://microservices.io/patterns/self-registration.html

Advertising Services
CODE EXAMPLE HERE

http://microservices.io/patterns/self-registration.html

Discovering Services
"When making a request to a service, the
client obtains the location of a service
instance by querying a Service Registry,
which knows the locations of all service
instances."

-- microservices.io

http://microservices.io/patterns/client-side-discovery.html

Discovering Services
"When making a request to a service, the
client obtains the location of a service
instance by querying a Service Registry,
which knows the locations of all service
instances."

-- microservices.io

http://microservices.io/patterns/client-side-discovery.html

Discovering Services
● Configure client w/ registryURL
● Query Registry w/ serviceURI
● Registry returns serviceURL
● Client uses serviceURL
● Renewal optional

http://microservices.io/patterns/client-side-discovery.html

Discovering Services
CODE EXAMPLE

http://microservices.io/patterns/client-side-discovery.html

Health Checking
"A service has an health check API endpoint
(e.g. HTTP /health) that returns the health of
the service. A health check client - a
monitoring service, service registry or load
balancer - periodically invokes the endpoint to
check the health of the service instance."

-- microserivce.io

https://inadarei.github.io/rfc-healthcheck/

Health Checking
"A service has an health check API endpoint
(e.g. HTTP /health) that returns the health of
the service. A health check client - a
monitoring service, service registry or load
balancer - periodically invokes the endpoint to
check the health of the service instance."

-- microserivce.io

https://inadarei.github.io/rfc-healthcheck/

Health Checking
● Services support health-checks
● Services renew with the registry
● Registry drops service on failed checks
● Registry drops service on expired renewals

https://inadarei.github.io/rfc-healthcheck/

Health Checking
CODE EXAMPLE

https://inadarei.github.io/rfc-healthcheck/

Discovery patterns are the DNS of application services.

Discovery Exercise

The Adaptable System

The Adaptable System
● Service/API Designers
● Evolvable Providers
● Adaptable Consumers
● Adaptation Exercise

Service/API Designers
"The value of a well-designed object is
when it has such a rich set of
affordances that the people who use it
can do things with it that the designer
never imagined."

-- Donald Norman, 1994
@jnd1er

https://en.wikipedia.org/wiki/The_Design_of_Everyday_Things

Service/API Designers
● Promise message models, not object types
● Document link identifiers, not URLs
● Publish vocabularies, not API definitions

@jnd1er

https://en.wikipedia.org/wiki/The_Design_of_Everyday_Things

Evolvable Providers
"When people are building on top of our API,
we’re really asking them to trust us with the time
they’re investing in building their applications.
And to earn that trust, we can’t make changes [to
the API] that would cause their code to break."

-- Jason Rudolph, Github (2013)

https://www.slideshare.net/yandex/api-design-at-github-jason-rudolph-github

@jasonrudolph

Evolvable Providers
● Don't take things away
● Don't change the meaning of things
● Make all additions optional

@jasonrudolph

https://www.slideshare.net/yandex/api-design-at-github-jason-rudolph-github

Adaptable Consumers
"When you can build a client that
doesn’t have to memorize the solution
ahead of time you can start building
clients who are 'smart' enough to
adapt to new possibilities as the
service presents them."

-- Mike Amundsen, 2016

http://shop.oreilly.com/product/0636920037958.do

Adaptable Consumers
● Code defensively
● Code to the media type
● Leverage the API vocabulary
● React to link relations for workflow

http://shop.oreilly.com/product/0636920037958.do

Providers evolve via humans, consumers adapt via code.

Adaptation Exercise

Summary

Summary
● A RESTful Design
● Message-Oriented Implementation
● Discovery Patterns
● Emergent Adaptability

A RESTful Design
● Microservices means independent & loosely-coupled
● REST properties are close to Microservice properties
● Adopt Microservice Constraints

@Fielding

Message-Oriented Implementation
● Models on the Inside
● Messages on the Outside
● Vocabularies Everywhere

@PatHelland

Discovery Patterns
● Advertising Services
● Discovering Services
● Health Checking/Renewals

@CRichardson

Emergent Adaptability
● Designers promise messages
● Services implement non-breaking changes
● Consumers code defensively

@mamund

RESTful Microservices
from the Ground Up

Mike Amundsen
API Academy

@mamund

