Adaptable Clients
and Evolvable APIs

Mike Amundsen
APl Academy / CA
@mamund

Introduction

Mike Amundsen
@mamund

@ APIDesign Training | APl x |

= = C f [) www.apiacademy.co Q [9 v =

Your Guide to APl Design &
Implementation Best Practices

API Academy delivers free online lessons and in-person consulting PN SERIGEN
services covering essential APl techniques and tools for business
managers, interface designers and enterprise architects

What is an API? API Design Basics Choosing a Solution
Get an overview of what an APl 15 and Understand the AP architecture Choose between the various solutions
that offer the basic components for

enterprise APl Management

what it does, to help you realize the process and learn bas
business value of APis mple

mentation best pr

Creating Fvolvable Hypermedia Applications

OREILLY"

Services for a Changing World

= [ESul

\

&

Building B | W

Designing APIs
Hypermedla
APTs with for the Web

HTML5 & NO Mike Amundsen
V I D E O Leonard Richardson,

O’REILLY® Mike

Mike Amundsen & Sam Ruby

OREILLY"

Hyp ermedia

ENABLING CLIENT APPLICATIONS WITH THE POWER OF THE WEB

Mike Amundsen

Twelve Patterns for Adaptable Apps

~our Design Patterns
—our Basic Principles
—our Shared Agreements

L/

Design Patterns

1.PASS MESSAGES, NOT OBJECTS
2.SHARE VOCABULARIES, NOT MODELS
3.THE REPRESENTOR PATTERN
4.PUBLISH PROFILES

L2

Basic Principles

5. MUST IGNORE

6. MUST FORWARD

/. PROVIDE MRU

8. USE IDEMPOTENCE

L/

Basic Agreements

9. USE RELATED
10. USE NAVIGATION
11. PARTIAL SUBMIT
12. STATE WATCH

Caution!
These are preliminary drawings and may
change prior to publication

Design Patterns

Pass Messages, Not Objects

"I'm sorry that coined the term 'objects’ for this

topic. The big idea Is 'messaging'.

Alan Kay, 1998

Pass Messages, Not Objects

"I'm sorry that coined the term 'objects’ for this

topic. The big idea Is ‘'messaging’.

Alan Kay, 1998

Pass Messages, Not Objects

Use a Registered Hypermedia Type

HAL
Collection+JSON
Siren

UBER

Atom

Share Vocabularies, Not Models

"It Is easler to standardize representation and
relation types than objects and object-specific

Interfaces."
-- Roy Fielding

Share Vocabularies, Not Models

"It Is easler to standardize representation and
relation types than objects and object-specific

Interfaces."
-- Roy Fielding

< HAGE YRCAUAULS
{/@}\/ KM
ADIVIS
iiw Vt% it
1 X YRTAND
w%‘» 4\ &/ \OM
M‘Lﬁ?Kl\(i < U KT

\QT% 5D
VO@%T y Ko

Share Vocabularies, Not Models

Use Existing Shared Vocabularies

|JANA Link Relation Values
Schema.org

Microformats

Dublin Core

Activity Streams

Use the Representor Pattern

"The Strategy Pattern lets the algorithm vary
Independently of the clients that use it."
- Gamma, et al.

Design Patterns

Elements of Reusable
Object-Oriented.Software
Erich Gamma

SIS DNILNAWOD TVNOISSIIONd ATISIM-NOSIaay +

Use the Representor Pattern

Implement a Representor/Strategy Pattern

Standard Internal Resource Model
Strategy Messages Format Dispatch

Implement a o e Bl Pattern

case "application/hal+json™:

= WE;jSDHfﬂbje:t! root);

Standard Inte e
Strategy Mes e h

Publish Profiles

"Profiles provide a way to create a ubiquitous
language for talking about APIs (resources) for
both humans and machines."

-- Mark Foster

Publish Profiles

Use a Profile like ALPS to share vocabularies

Define all possible data and actions
Publish using Profile Standard (RFC6906)
Servers emit profile URI

Clients validate profile URI

Publis

Use aP

Define a
Publish
Servers
Clients

EE products-alps.

rel="help" href="http:/ example.

rsion="1.8">

cts.

org/documentation/produ
prototype product API.

15 @

~t="#product”>

*Retrieve & Single Product</ »

*Provides access to all products</ »
>
id="search" type="safe" rt="&product":
»Provides access to all products</ »

href="#id" /=

id="edit" type="1idempotent"” rit="#product”>
*Updates A Product</
href="#product” /»
>
id="create” type="unsafe" rt="#product":

new product</ >

href="#product” /»

nTtml

I

laries

6)

Basic Principles

Must Ignore

“The main goal of the MUST IGNORE pattern
of extensibility is to allow backwards- and

forwards-compatible changes.”
- David Orchard

Must Ignore

Clients MUST IGNORE any data/inputs that the
client does not understand.

MUST FORWARD

“A proxy MUST forward unrecognized header

[Docs] [txt|pdf] [draft-ietf-httpbi...] [Diffl] [Diff2] [Errata]

PROPOSED STANDARD

Errata st

Internet Engineering Task Force (IETF) R. Fielding, Ed.

Request for Comments: 7230 Adobe

Obsoletes: 2145, 2616 J. Reschke, Ed.

Updates: 18 greenbytes

Category: Standards Track June 2014
ISSN: 2070-1721

Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext information
systems. This document provides an overview of HTTP architecture and
its associated terminology, defines the "http" and "https" Uniform
Resource Identifier (URI) schemes, defines the HTTP/1.1 message
syntax and parsing requirements, and describes related security
concerns for implementations.

Status of This Memo

fields...”
-- RFC 7230

Must Forward

Clients MUST FORWARD (unchanged) any
iInput fields (URL or FORM) that the client does

not recognize.

Provide MRU

“A feature of convenience allowing users to
quickly see and access the last few used files
and documents.”

-- Wikipedia

Common menus in Microsoft Windows

Provide MRU

Services SHOULD return the most recently-
used (MRU) LINKS and FORMS in all

reSponses.

Use Idempotence

“Can be applied multiple times without
changing the result beyond the Initial

application.”
-- Wikpedia

A request method is considered "idempotent" if the intended effect on
the server of multiple identical requests with that method is the
same as the effect for a single such request. Of the request methods
defined by this specification, PUT, DELETE, and safe request methods
are idempotent.

Like the definition of safe, the idempotent property only applies to
what has been requested by the user; a server is free to log each
request separately, retain a revision control history, or implement
other non-idempotent side effects for each idempotent request.

Idempotent methods are distinguished because the request can be
repeated automatically if a communication failure occurs before the

Use Idempotence

All network requests SHOULD be idempotent in
order to allow clients to safely repeat them
when response Is unclear.

Shared Agreements

Use Related

Services SHOULD return a RELATED LINK
that responds with ALL the possible actions for

this context.

Use Navigation

“To achieve a single goal which can be broken
down into dependable sub-tasks.”
-- Design Patterns (@uipatterns)

Use Navigation

Services SHOULD provide "next/previous”
LINK to handle multi-step workflow with

"cancel", "restart", & "done."

Partial Submit

“Think of the actions as approximations of what
IS desired.”
-- Donald Norman

Partial Submit

Services SHOULD accept partially filled-in
FORM and return a new FORM with the
remaining fields.

State Watch

“Data representing variables in a dynamical
system...”
-- Jens Rassmussen

State Waltc W

“Data ref nowdere a dynamical
B e e system...”

Tf If €,

\ N\ sl Rl - S S MuSssen

Valve . recalibrate

Closed meter

SYMECT

1f, after calibration, is still

B, begin to read meter and

speculate functiooally (could
ba a leak)

State Watch

Services SHOULD allow clients to subscribe to
WATCH VALUES so that clients can deterimine
"done."

Twelve Patterns for Adaptable Apps

~our Design Patterns
—our Basic Principles
—our Shared Agreements

Jsk MAUGATIO

== [,Tyl %

|
= NC¥T >
eNerr |« P N>
(0 =
S \
e \
ilies

8
\pigzshbe (NP,
1 &
DISAZD)

Design Patterns

1.PASS MESSAGES, NOT OBJECTS
2.SHARE VOCABULARIES, NOT MODELS
3.THE REPRESENTOR PATTERN
4.PUBLISH PROFILES

s MsSAHES

—1 ¢ I8

=

! = oA
= QL af
MtSSKGD k

Basic Principles

5. MUST IGNORE

6. MUST FORWARD

/. PROVIDE MRU

8. USE IDEMPOTENCE

M JST- MM&E

i

M%P((IUC(})%S
DIRIE oot

Basic Agreements

9. USE RELATED
10. USE NAVIGATION
11. PARTIAL SUBMIT
12. STATE WATCH

The Best Software Architecture

"The best software architecture '‘knows' what
changes often and makes that easy."
- Paul Clements

Adaptable Clients
and Evolvable APIs

Mike Amundsen
APl Academy / CA
@mamund

