
API Design Methodology
Mike Amundsen,

CA / Layer7
@mamund



Introduction

































Actually, we have a 
methodology already...



Design Guidelines

● Craft [good/pretty/usable/stable] URIs





Design Guidelines

● Craft [good/pretty/usable/stable] URIs
● Map domain actions to HTTP methods (CRUD)





Design Guidelines

● Craft [good/pretty/usable/stable] URIs
● Map domain actions to HTTP methods (CRUD)
● Use the proper HTTP Status Codes





Design Guidelines

● Craft [good/pretty/usable/stable] URIs
● Map domain actions to HTTP methods (CRUD)
● Use the proper HTTP Status Codes
● Document serialized objects as HTTP bodies





Design Guidelines

● Craft [good/pretty/usable/stable] URIs
● Map domain actions to HTTP methods (CRUD)
● Use the proper HTTP Status Codes
● Document serialized objects as HTTP bodies
● Use HTTP headers responsibly





Design Guidelines

● Craft [good/pretty/usable/stable] URIs
● Map domain actions to HTTP methods (CRUD)
● Use the proper HTTP Status Codes
● Document serialized objects as HTTP bodies
● Use HTTP headers responsibly
● Describe edge cases (async, errors, authN/Z)













But there's a problem here...



Those are not design guidelines..



They are implementation guidelines!





Ok, so what is a 
design methodology, then?







Here's a simple seven-step 
procedure...



Here's a simple seven-step 
procedure...



Let's design a Maze game API





1. List the Semantic Descriptors



1. List the Semantic Descriptors
(the what?)



1. List the Semantic Descriptors
(the what?)

You know, the stuff!



1. List the Semantic Descriptors

● A maze
● A maze cell
● A switch
● Switch position ("up" or "down")
● The title of a maze cell
● A doorway connecting to cells
● An exit from the maze
● A list of mazes





2. Draw a State Diagram





3. Reconcile Names



3. Reconcile Names

● IANA Link Relation Values
● schema.org
● microformats
● Dublin Core
● Activity Streams



3. Reconcile Names

● maze
● start
● current
● exit
● north, south, east, west
● switch
● flip



3. Reconcile Names

● maze
● start (IANA)
● current (IANA)
● exit
● north, south, east, west
● switch
● flip



3. Reconcile Names

● maze
● start (IANA)
● current (IANA)
● exit (microformats)
● north, south, east, west (microformats)
● switch
● flip



3. Reconcile Names

● maze
● start (IANA)
● current (IANA)
● exit (microformats)
● north, south, east, west (microformats)
● switch
● flip edit (IANA)



3. Reconcile Names

● http://mamund.com/rels/maze (RFC5988)
● start (IANA)
● current (IANA)
● exit (microformats)
● north, south, east, west (microformats)
● http://mamund.com.rels/switch (RFC5988)
● flip edit (IANA)



3. Reconcile Names
● IANA

○ edit
○ start 
○ current

● microformats
○ exit
○ north, south, east, west

● RFC5988
○ http://mamund.com/rels/switch 
○ http://mamund.com/rels/maze





OK, that was the design part...



But I still need to implement it, right?



4. Choose a Media Type



4. Choose a Media Type

● Use application/json, application/xml
● Collection type: Atom, OData, Collection+JSON
● Free-form: HTML, Siren, HAL, JSON-LD
● Invent your own semantic type



4. Choose a Media Type

● Use application/json, application/xml
● Collection type: Atom, OData, Collection+JSON)
● Free-form: HTML, Siren, HAL, JSON-LD)
● Invent your own semantic type



4. Choose a Media Type

● Use application/json, application/xml
● Collection type: Atom, OData, Collection+JSON
● Free-form: HTML, Siren, HAL, JSON-LD
● Invent your own semantic type



4. Choose a Media Type

● Use application/json, application/xml
● Collection type: Atom, OData, Collection+JSON
● Free-form: HTML, Siren, HAL, JSON-LD
● Invent your own semantic type



4. Choose a Media Type

● Use application/json, application/xml
● Collection type: Atom, OData, Collection+JSON
● Free-form: HTML, Siren, HAL, JSON-LD
● Invent your own semantic type







5. Write a Profile







6. Implementation



6. Implementation

ta-da!















And now we have running code!



Wait, what's step seven?



7. Publication



7. Publication

● Publish your "billboard" URL
● Publish your profile
● Register new rel values and/or media types
● Publish the documentation
● Consider "well-known" URIs



Now, you're done!



Seven Simple Steps

1. List the Semantic Descriptors
2. Draw a State Diagram
3. Reconcile Names
4. Write a Profile
5. Select a Media Type
6. Implementation
7. Publication



Some Final Advice



Resources are an 
implementation detail





Don't fall into the collection trap





Don't start with the 
representation format





URL design doesn't matter





Standard names are probably better 
than yours.





Don't keep all the hypermedia 
in one place







Some Final Advice

● Resources are implementation details
● Don't fall into the collection trap
● Don't start w/ the representation format
● URL design doesn't matter
● Standard names are probably better than 

yours
● Don't keep all the hypermedia in one place



In Conclusion...













In Conclusion...

● Don't confuse implementation w/ design
● Design is the hard part (high value)
● Implementation is the easy part (high speed)
● Avoid common design mistakes
● Go out and make lots of APIs!



API Design Methodology
Mike Amundsen,

CA / Layer7
@mamund


